Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(11): 101253, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37918405

RESUMO

Colonization of the gut and airways by pathogenic bacteria can lead to local tissue destruction and life-threatening systemic infections, especially in immunologically compromised individuals. Here, we describe an mRNA-based platform enabling delivery of pathogen-specific immunoglobulin A (IgA) monoclonal antibodies into mucosal secretions. The platform consists of synthetic mRNA encoding IgA heavy, light, and joining (J) chains, packaged in lipid nanoparticles (LNPs) that express glycosylated, dimeric IgA with functional activity in vitro and in vivo. Importantly, mRNA-derived IgA had a significantly greater serum half-life and a more native glycosylation profile in mice than did a recombinantly produced IgA. Expression of an mRNA encoded Salmonella-specific IgA in mice resulted in intestinal localization and limited Peyer's patch invasion. The same mRNA-LNP technology was used to express a Pseudomonas-specific IgA that protected from a lung challenge. Leveraging the mRNA antibody technology as a means to intercept bacterial pathogens at mucosal surfaces opens up avenues for prophylactic and therapeutic interventions.


Assuntos
Mucosa , Nódulos Linfáticos Agregados , Camundongos , Animais , Imunoglobulina A , Anticorpos Monoclonais
2.
Front Immunol ; 14: 1193855, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275888

RESUMO

Introduction: Secretory IgA (SIgA) protects the intestinal epithelium from enteric pathogens such as Salmonella enterica serovar Typhimurium (STm) through a process known as immune exclusion, where invading bacteria are aggregated via antibody cross-linking, encased in mucus, and then cleared from the intestinal tract via peristalsis. At high cell densities, the STm aggregates form a tightly packed network that is reminiscent of early bacterial biofilms. However, the underlying mechanism of how SIgA mediates this transition from a motile and invasive state to an avirulent sessile state in STm is currently unknown. Methods: In this report, we developed and validated a methodology known as the "snow globe" assay to enable real-time imaging and quantification of STm agglutination by the mouse monoclonal IgA Sal4. Results: We observed that agglutination in the snow globe assay was dose-dependent, antigen-specific, and influenced by antibody isotype. We determined that flagellar-based motility was a prerequisite for rapid onset of agglutination, even at high cell densities where cell-cell contacts are expected to be frequent. We also investigated the roles of individual cyclic-di-GMP metabolizing enzymes previously implicated in motility and biofilm formation in Sal4 IgA-mediated agglutination. Discussion: Taken together, our results demonstrate that IgA-mediated agglutination is a dynamic process influenced by bacterial motility and cell-cell collisions. We conclude that the snow globe assay is a viable platform to further decipher the molecular and genetic determinants that drive this interaction.


Assuntos
Bactérias , Salmonella typhimurium , Animais , Camundongos , Imunoglobulina A , Imunoglobulina A Secretora , Aglutinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA